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Comparative Study of Restoration Algorithms
ISTA and IISTA
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Abstract—our proposed work is to compare iterative shrinkage thresholding algorithm (ISTA) and improved iterative shrinkage
thresholding algorithm (IISTA) for image restoration of linear inverse problems. This class of problems results from combining a linear
observation model with a non-quadratic regularizer e.g., total variation regularization. Number of iterations, Regularization parameters and
Regularization functions are used for comparsion.Thsese algorithms are performed through a recursive application of two simple
procedures linear filtering and soft thresholding.Experimental results shows better performance of IISTA than ISTA.

Index Terms— IISTA,ISTA, image restoration, inverse problems, l0 norm,l1 norm, l2 data fidelity term, regularization function ,total variation
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1  INTRODUCTION
NVERSE  problems  abound  in many application areas of image
processing, remote sensing, radar imaging,tomographic  imaging,
microscopic imaging, astronomic imaging ,digital photography

[1][2][3][16].  Image restoration is  one of the earliest  and most classical
linear inverse problems in imaging dating back to the 1960s [1].In a
inverse problem, the goal is to estimate an unknown original image x
from a noisy observation y, produced by an operator K applied to x,
when K is a linear we have linear inverse problems (LIP). Many applica-
tions  to  LIPs  define  a  solution  x a restored image as a minimizer of a
convex objective function : = [ , + ] given by

( ) = 1/2 + ( )                  (1)

where K: Y is the linear direct operator,  and Y are real Hilbert
spaces (both with norm denoted as · ), : R is a function, 
[0, + ] is a parameter.

In a regularization framework minimizing f is seen as a way of over-
coming the ill-conditioned or singular nature of K, which precludes
inverting it. In this context  is  called  regularizer  and   is  called
regularization parameter [5].
In a finite dimensional Bayesian setting, the reasoning behind (1) as
follows: Assume that y=kx+w, where w is a sample of a white zero-
mean Gaussian random vector/field of variance 2  , let p(x) be the
adopted prior, thus the logarithm of a posteriori density is
log ( | ) ( )p x y f x upto a constant with = 2  and

( ) log ( )x p x : maximum posteriori (MAP) estimate are
thus minimizer of f. Despite the possible   interpretation of (1)
 We  will  refer  to  simply as the regularizer.The intuitive
meaning of f is simple: minimizing it corresponds to looking
for a compromise between the lack of fitness of a candidate
estimate X to the observed data, measured by

and its degree of undesirability given by ( )x . The regulari-
zation parameter controls the relative weight of the two
terms. Examples of total variation (TV) regularization [8][17]
and wavelet based regularization [18][19].The non-
differentiable nature of f together with the huge dimension of
its argument  for example 512x512 image X=R262144, place its
minimization beyond the reach of standard  off-the-shelf op-
timization methods.
This paper strictly concerned with algorithms for minimiza-
tion [1] and discusses different choices of  and .

2 PRELIMINARIES
2.1 Total Variation Function
For a real valued continuous function f defined in an interval
[ , ] its total variation is one measure of a one dimen-
sional arc length of the curve with parametric equation

( ) for [ , ]  [8][9][10][11].
The total variation of differential function f defined on an in-
terval [ , ]  has the following expression  is Riemann
integral.

( ) = ( (2)

The  form  of  the  total  variation  of  differentiable  function  of
several variables.  Given a differential function f defined on a
bounded open set   the total variation of f has the fol-
lowing expression

( ) = ( (3)

Here  ·  denotes the l2 norm
Proof: The first step in the proof is to prove as equality which
follows from Gauss-Ostrogradsky theorem

I
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Lemma:
Under the conditions of the theorem the following equality
holds

(4)

Proof of the Lemma:

From Gauss-Ostrogradsky theorem

= n (5)

By substituting R=f we have

( ) = n (6)

Where is zero on the border of by definition

( ) = 0 (7)

( ) = 0 (8)

( + ) = 0 (9)

= (10)

= (11)

Proof  the  equality  under  the  condition  of  the  theorem,  from the
lemma we have

=

(12)

in the last part  could be omitted because by definition its essen-
tial supermum is at most one

On the other hand we consider : [ , ]   and  which is
up to  approximation of  with the same integral. We can
do this since  is  dense  in . Now again substituting into the
lemma

lim = [ . ] = lim

= (13)

This means we have a convergent sequence of  that
tends to  as well as know that

(14)

It  can be seen that from the proof that the supermum is attained
when  - The function f is said to be of bounded variation
precisely if its total variation is finite.

2.2 The General Optimization Model

Given min {F(x) =f(x) +g(x): x  E}                                    (15)
with the following assumptions.

1. The vector space E stands for a finite dimensional Euclidean
space with inner product< ., . > and norm . =< > .

2. g :E ( , + ]  is a proper closed convex function.

3 .f: E R is a continuously differentiable with Lipschitz continu-
ous gradient L (f)

( ) ( ) = ( ) for  every  x,  y  E
where .  denotes standard Euclidean norm andL L (f) >0 is the
Lipschitz constant [10] [11] of .

4 Equation (15) is solvable =argmin F 0 and for  X, we
set = ( ).
In particular, the standard convex constrained minimization prob-
lem:
  Min {f(x): x  C}                                                                  (16)
is obtained by choosing g(x) = c (x), with C E some closed
convex set and c being the indicator function on C. Likewise,
with f(x 0, the general non smooth convex minimization prob-
lem is obtained.[13]

2.3 Proximal Map
The key role within approach is the proximal map of Moreau
associated to a convex function.
Given proper closed convex function: E , + ] and any
scalar t>0, the proximal map associated to g is defined by

proxt(g)(x)= { ( ) + 1/2 } (17)

The proximal map associated with a closed proper convex func-
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tion g has the following properties.
Lemma: Let g , + ] be a closed proper convex function
and for any t>0,

g (x) = {g(u) + / } (18)
    Then, a) The infirmum in (18) is attained at the unique point
proxt(g) (x). As a consequence, the map ( + ) is single val-
ued from E into itself and

( + ) ( ) prox (g)( ) (19)

b) The function  is continuously differentiable on E with Lip-
schitz gradient given by

( ) = / prox (g)( ) (20)

 c) In particular if g= c , the indicator of a closed convex set C
E, then prox t(g) ( ) ( + ) =  , the Euclidean projection
operator on C and ( ) = P (x) x

3 Proposed Work

3.1 Basic Gradient Based Algorithm
The equation (15) solves as follows. Fix any scalar t > 0, then
solves the convex minimization problem if and only if the follow-
ing statements hold:

                       0      t ( ) + t ( )

                 0       t ( ) - +  + t ( )

( + ) ( )      (I- t )( )

= ( + )  (I- t )( )                                                    (21)

The equation (21) calls for the fixed point iterative scheme:

, = ( + ) ( )( ), ( > 0) (22)

= ( )( )( )
= { / ( ( )) + ( ) ( )

3.1   IST Algorithm

when g(x) = this equation reduces to

= ( ( )) (24)

Equation (24) is called IST (Iterative Shrinkage Thresholding)
Algorithm [13], where : is shrinkage operator de-
fined by = (|x | ) sign ( ).   A typical condition en-
suring the convergence of the sequence xk produced by IST
algorithm is to require tk  (0, 2/L (f)).

3.2 Improved   IST Algorithm

1. Input an upper bound L(f) on the Lipschitz of
2. Take y1=x0 E, t1=1
3. For k 1.  Compute  Xk = (yk)

              tk = (1+ 1 + 4 )/2

y = x   + ( 1 )/  ( Xk- Xk-1)

where ( ) = / (g) (y – 1/ ( ))

= { / ( / ( )) + ( )}

Our proposed algorithm is called Improved Iterative Shrinkage
Thresholding algorithm (IISTA) [14]. In this each iterates depends
on the previous two iterate and not only on the last iterate as in
ISTA. The operator depends   uses two previous iterates (Xk,
Xk-1) as a linear combination.
The rate of convergence of IISTA   is O (1/k2) while it is O (1/k) in
ISTA.

3.3 Regularization Functions

In general, the image restoration problems have the
form

( ) = ( ) + ( ) (25)

f:  is smooth and convex data fidelity term, usually

( ) =
1
2 (26)

C:  is a regularization or penalty function, typically con-
vex often non-differentiable.

If A=I, we have a denoising problem.
If c is a proper and convex  is strictly convex, there is a unique
minimizer. Thus the shrinkage thresholding function is

=
1
2 + ( ) (27)

is a well defined Moreau-proximal mapping.

If  c( )  ,  norm  then  ( , ) where
( , ) = . (abs(x)>=sqrt (2* ) ).

If ( )  ,  norm then ( ) = ( , ) where

( , ) = . ) and

( ) = {

Note that both functions are component wise application

If c (z) =TV (z), total variation function then equation  becomes
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( ) =
1
2 + ( ) (21)

Where ( ) = ) + ( )    where (z) and (z) are

linear operators corresponding to horizontal and vertical first
order differences at point i respectively   i.e., =
where j is the first order neighbour to the left of i, and =

 where k is the first order neighbour above i. This equation is
isotropic and not differentiable.

4 Experimental Results
Our Experiments are carried with MATLAB R2010a and laptop
of Intel Corei3 processor. The observation shows that objective
function   monotonically decreasing as the number of iteration
increases. The Iterative Signal-to-Noise Ratio (ISNR) increases
when the number of iteration increases. The number of iteration
required by IISTA for restoration is less than that of ISTA. When
the number of iteration increases then the value of objective func-
tion decreases

Experiments are performed using blur size 4x4 and 9x9.
The increase of blur size shows that increase of iteration for res-
toration. The IST and IIST algorithms are compared with the role
of regularization functions and regularization parameters.

The Number of iterations is compared in the tables 1-4.
Tables 5-8 gives result of regularization function role with num-
ber of iterations. The study regularization parameter  with ISNR,
objective function and regularization function is done in tables 9-
12.

Fig 1 and 2 shows the value of ISNR is higher for IISTA
than ISTA. Fig 3 and 4 shows restoration using different norms.

5 Conclusion
The performance of IISTA is better than ISTA in terms of number
of iterations and rate of convergence. Under blur size 9x9 and
4x4 TV norm shows better ISNR than l0  norm  and  l1 norm for
both  ISTA  and  IISTA.In  the  case  of  l1 norm using 9x9 blursize
shows recovery is not possible after a certain number of itera-
tions. The study of regularization parameter shows better perfor-
mance for l0 norm than TV norm and l1 norm. It is observed that
when the value of decreases the performance of algorithms
is also decreases. Our studies may be continued using different
types of noise.

Table 1
Variations of different parameters using ISTA blur size 4x4

Number
of
Iterations

Objective
function(104) Criterion ISNR

CPU time
Seconds

500 1.37235 0.8517 6.794 97.48

1000 1.34262 0.3016 7.155 187.41

1500 1.32274 0.1433 7.446 302.91

2000 1.32123 0.0700 7.652 398.38
2500 1.31348 0.0441 7.722 505.04

3000 1.31317 0.0242 7.793 584.27

Table 2

Variations of different parameters using IISTA blur size 4x4

Number of
iterations

objective
 function(104)

   Criterion
ISNR

CPU time
Seconds

  50   1.39000       17.74000 6.649        11.56

 100    1.33174        4.20200 7.478        19.59

 150  1.31601         0.60700 7.903        30.72

200  1.31479        0.09780 7.968        38.90

 250  1.30899         0.08699 7.965        53.16

 300 1.301143         0.07359 8.080        57.87

Table 3

Variation of different parameters using ISTA Blur size 9x9

Number of
iterations

Objective
function(103)

Criterion ISNR CPU time
Seconds

1000 9.24413 0.4265 6.679 184.12
2000 8.94820 0.1473 7.167 364.27
3000 8.89792 0.0762 7.504 537.14
4000 8.87524 0.0459 7.796 726.74
5000 8.79952 0.;032 7.947 932.47

Table 4

Variations of different parameters using IISTA blur size 9x9

Iterations Objective
function
(103)

Criteri-
on

ISNR CPU
time
seconds

100 9.16054 5.900 6.974   20.95
150 8.93014 2.846 7.589   28.74
200 8.85125 1.789 8.064   38.35
250 8.890913 0.800 8.415   52.08
300 8.81801 0.331 8.633   59.64
400 8.72853 0.053 8.786   84.01
500 8.77176 0.036 8.846 106.54
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                                   (a)

                              (b)

                               (c)

                                   (d)

Fig. 1   a) original Image b) noisy and blurry Image blur size 4x4
c) Restoration using ISTA ISNR=7.155 number of itera-
tions=1000 d) Restoration using IISTA ISNR=8.004number of
iterations=300

                                                      (a)

(b)

                                                     (c)

                                                    (d)

 Fig. 2 a) Original Image  b) noisy and blurry Image blur size 9x9
c)  Restoration using ISTA ISNR=7.947 number of  itera-
tions=5000  d) Restoration using IISTA ISNR=8.846 number of
iterations=500

original image

noisy and blurry image

restorated image

restorated image

original image

noisy and blurry image

restorated image

restorated image
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(a)

(b)

(c)

(d)

(e)
Fig 3. a) Original image b) noisy and blur image

                  Blur size 9x9 Restorated using ISTA c) TV norm
                 d) l1 norm and e) l0 norm Number of iterations

                  is 5000.

  Table 5
                     ITERATIONS vs. ISNR   using ISTA Blur size 9x9

Iterations
                     ISNR

TV norm l1 norm l0 norm
500 6.275 6.285 6.285
1000 6.690 6.688 6.688
1500 6.985 6.955 6.955
2000 7.210 7.174 7.210
2500 7.398 7.125 7.367
3000 7.557 7.149 7.530
3500 7.655 7.141 7.648
4000 7.786 7.137 7.781
4500 7.865 7.157 7.879
5000 7.993 7.163 7.974

 Table 6
              ITERATIONS vs. Objective function using ISTA Blur size 9x9

Iterations
            Objective function
TV norm
(103)

l1 norm(104) l0 norm(103)

500 9.54921 2.81700 5.42570
1000 9.23162 2.80714 5.18368
1500 9.09400 2.79831 6.95500
2000 9.05012 2.80361 4.98930
2500 8.91964 2.79718 4.88313
3000 8.92602 2.80016 4.89099
3500 8.92025 2.80091 4.85595
4000 8.92264 2.79913 4.83579
4500 8.80493 2.80014 4.81461
5000 8.84212 2.80633 4.84594

original image

noisy and blurry image

restorated image

restorated image

restorated image
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                                                       (a)

                                                       (b)

                                                      (c)

                                                      (d)

                                                     (e)
Fig  4  a)  Original  image  b)  noisy  and  blur  image   blur  size  4x4
Restorated using IISTA c) TV norm d) l1 norm and e) l0  Number
of Iterations is 150

Table 7
ITERATIONS Vs ISNR and Objective function using  IISTA

Blur size 9x9

Iterations
ISNR Objective function

TV
norm

l0

norm
TV
norm
(103)

l0

norm(103)

50 6.613 6.160 9.70883 5.53750
100 6.951 6.972 9.14136 5.02918
150 7.612 7.622 9.01817 4.81195
200 8.077 8.127 8.81832 4.78740
250 8.452 8.410 8.81019 4.79088
300 8.660 8.612 8.81834 4.80032
350 8.452 8.682 8.79188 4.72642
400 8.750 8.801 8.78827 4.76248
450 8.719 8.788 8.80850 4.79617
500 8.736 8.718* 8.79433 4.78165

                                                            Table 8
                                 ITERATIONS vs. ISNR using IISTA Blur size4x4

Iterations
ISNR

TV  norm  l1 norm l0 norm
50 6.649 6.431 6.610
60 6.841 6.523 6.710
70 7.037 6.525 6.753
80 7.130 6.523 6.852
90 7.322 6.544 6.880
100 7.482 6.549 6.903
110 7.560 6.578 6.891
120 7.651 6.554 6.842
130 7.764 6.535 6.891
140 7.823 6.521 6.909
150 7.918 6.606 6.827

original image

noisy and blur image

restorated image

restorated image

restorated image
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                           Table 9
Regularization parameter  vs. ISNR using ISTA
                Number of Iterations=50

ISNR
TV norm l1 norm l0 norm

10-1 6.427 5.916 5.920
10-2 6.002 6.000 6.002
10-3 5.941 5.879 5.930
10-4 5.902 5.923 5.936
10-5 5.894 5.898 5.895
10-6 5.901 5.895 5.932
10-7 5.921 5.894 5.882
10-8 5.914 5.902 5.914
10-9 5.899 5.921 5.916
10-10 5.905 5.914 5.924
10-20 5.850 5.899 5.898
10-30 5.898 5.905 5.891
10-38 5.892 5.899 5.912

                               Table 10
Regularization parameter  vs. Objective function
 using ISTA   Number of Iterations=50

                               Table 11
Regularization parameter  vs. ISNR using IISTA
                 Number of iterations=50

                                 Table 12
Regularization parameter  vs.  Objective function using IISTA
                    Number of iterations=50
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